یک مدل برنامه‌ریزی ریاضی برای توزیع اقلام امدادرسانی در یک زنجیره تأمین بشردوستانه

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 گروه مدیریت صنعتی، واحد رشت، دانشگاه آزاد اسلامی ، رشت ، ایران

2 گروه مدیریت صنعتی، واحد نوشهر ، دانشگاه آزاد اسلامی ، نوشهر، ایران

3 گروه مهندسی صنایع، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران

چکیده

پس از وقوع بلایای طبیعی در مقیاس بزرگ، کمبود عرضه و توزیع ناعادلانه باعث خسارات مختلف می‌شود که مانع عملکرد زنجیره تأمین بشردوستانه می‌شود. برای این منظور، در این مقاله این مسئله را به‌عنوان یک مدل برنامه‌ریزی دوسطحی به‌منظور کمینه کردن نرخ تقاضای برآورده نشده، خطرات محیطی بالقوه، هزینه­های اضطراری در سطح بالایی تصمیم‌گیری زنجیره و همچنین، ماکزیمم کردن رضایت درک شده بازماندگان در سطح پایین تصمیم­گیری زنجیره مدل‌سازی می‌شود. سلسله‌مراتب تصمیم فرموله می‌کند. برای حل مدل پیشنهادشده از روش اپسیلون محدودیت اصلاح‌شده استفاده شده است. با توجه به نتایج به‌دست‌آمده، ضریب خطر ضایعات اثر قابل‌توجهی بر روی تابع محیطی تحمیل می‌کند و تأثیری بر روی تقاضای برآورده نشده و هزینه‌های ضروری ندارد. همچنین، با اعمال تغییرات در مقدار اپسیلون فاصله قابل‌قبول برای تعیین راه‌حل‌های نامطلوب مسئله چندهدفه ارائه‌شده است. این تحقیق نتایج ارزشمندی به مدیران و تصمیم گیران برای اخذ تصمیم باارزش بعد از وقوع بحران برای کنترل اوضاع ارائه می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Mathematical Programming Model for the Distribution of Relief Items in a Humanitarian Supply Chain

نویسندگان [English]

  • Reza Narimani 1
  • Majid Motamedi 2
  • Hossein Amoozad Khalili 3
1 Ph.D Student in Industrial Management, Rasht Branch, Islamic Azad University, Rasht, Iran
2 Dept. of Industrial Management, Nowshahr Branch, Islamic Azad University, Nowshahr, Iran
3 Dept. of Industrial Engineering, Sari Branch, Islamic Azad University, Sari, Iran
چکیده [English]

After large-scale natural disasters, supply shortages and inequitable distribution because of various damages that hinder the functioning of the humanitarian supply chain. For this purpose, in this paper, this problem is presented as a two-level planning model to minimize the rate of unmet demand, potential environmental risks, emergency costs at the upper level of the decision chain and, to maximize the perceived satisfaction of the survivors in the lower level of the decision chain is modeled. Formulates a decision hierarchy. To solve the proposed model, the modified epsilon method has been used. According to the obtained results, the risk coefficient of waste γ imposes significant effects on the performance of environmental sustainability. And it has no effect on the weighted total unmet demand rate, total emergency costs. Also, by applying changes in the epsilon value, the acceptable distance for determining the non-dominated solutions of the multi-objective problem is presented. Therefore, this study provides valuable results to managers and decision makers to make valuable decisions after a crisis to control the situation.

کلیدواژه‌ها [English]

  • Disasters
  • Relief Distribution
  • Epsilon Constraint
[1] Wang, B. C., Qian, Q. Y., Gao, J. J., Tan, Z. Y., & Zhou, Y. (2021). The optimization of warehouse location and resources distribution for emergency rescue under uncertainty. Advanced Engineering Informatics, 48, 101278.
[2] Jahangiri, S., Abolghasemian, M., Pourghader Chobar, A., Nadaffard, A., Mottaghi, V. (2021). Ranking of key resources in the humanitarian supply chain in the emergency department of iranian hospital: a real case study in COVID-19 conditions. Journal of Applied Research on Industrial Engineering, 8(Special Issue), 1-10.
[3] CRED. (2019). Natural Disasters 2019. Tech. rep.
[4] Jahangiri, S., Abolghasemian, M., Ghasemi, P., & Chobar, A. P. (2023). Simulation-based optimisation: analysis of the emergency department resources under COVID-19 conditions. International journal of industrial and systems engineering, 43(1), 1-19.
[5] Chobar, A. P., Adibi, M. A., & Kazemi, A. (2022). Multi-objective hub-spoke network design of perishable tourism products using combination machine learning and meta-heuristic algorithms. Environment, Development and Sustainability, 1-28.
[6] Yofrido, F. M., & Harjana, L. T. (2019). Social-fairness perception in natural disaster, learn from Lombok: a phenomenological report. Indonesian Journal of Anesthesiology and Reanimation, 1(1), 1-7.
[7] Qin, W., Zhao, X., Ma, Y., Li, Y., Qin, L., Wang, Y., & Du, J. (2018). A multi-objective optimization based method for evaluating earthquake shelter location–allocation. Geomatics, Natural Hazards and Risk, 9(1), 662-677.
[8] Zheng, Y. J., Chen, S. Y., & Ling, H. F. (2015). Evolutionary optimization for disaster relief operations: A survey. Applied Soft Computing, 27, 553-566.
[9] Anaya-Arenas, A. M., Ruiz, A., & Renaud, J. (2018). Importance of fairness in humanitarian relief distribution. Production Planning & Control, 29(14), 1145-1157.
[10] Boonmee, C., Arimura, M., & Asada, T. (2017). Facility location optimization model for emergency humanitarian logistics. International Journal of Disaster Risk Reduction, 24, 485-498.
[11] Roh, S. Y., Shin, Y. R., & Seo, Y. J. (2018). The Pre-positioned warehouse location selection for international humanitarian relief logistics. The Asian Journal of Shipping and Logistics, 34(4), 297-307.
[12] Ozbay, E., Çavuş, Ö, & Kara, B. Y. (2019). Shelter site location under multi-hazard scenarios. Computers & Operations Research, 106, 102-118.
[13] Praneetpholkrang, P., & Huynh, V. N. (2020, February). Shelter Site Selection and Allocation Model for Efficient Response to Humanitarian Relief Logistics. In International Conference on Dynamics in Logistics (pp. 309-318). Springer, Cham.
[14] Kanoun, I., Chabchoub, H., & Aouni, B. (2010). Goal programming model for fire and emergency service facilities site selection. INFOR: Information Systems and Operational Research, 48(3), 143-153.
[15] Maharjan, R., & Hanaoka, S. (2020). A credibility-based multi-objective temporary logistics hub location-allocation model for relief supply and distribution under uncertainty. Socio-Economic Planning Sciences, 70, 100727.
[16] Ma, Y., Xu, W., Qin, L., Zhao, X., & Du, J. (2019). Hierarchical supplement location-allocation optimization for disaster supply warehouses in the Beijing–Tianjin–Hebei region of China. Geomatics, Natural Hazards and Risk, 10(1), 102-117.
[17] Motamedi, M., and Movahedi, M., and Rezaian, J., and Rashidi Komijani, A. (2019). Designing a Non-Linear Mixed Integer Two-objective Math Model to Maximize the Reliability of Blood Supply Chain. Engineering and Quality Management, 8 (4), 259-274, [In Persian].
[18] Mohammadi, S., Darestani, S. A., Vahdani, B., & Alinezhad, A. (2020). A robust neutrosophic fuzzy-based approach to integrate reliable facility location and routing decisions for disaster relief under fairness and aftershocks concerns. Computers & Industrial Engineering, 148, 106734.
[19] Miç, P., Koyuncu, M., & Hallak, J. (2020). Primary health care center (PHCC) location-allocation with multi-objective modelling: a case study in Idleb, Syria. International journal of environmental research and public health, 16(5), 811.
[20]Wu, G. H., Chang, C. K., & Hsu, L. M. (2020). Comparisons of interactive fuzzy programming approaches for closed-loop supply chain network design under uncertainty. Computers & Industrial Engineering, 125, 500-513.
[21] Aghajani, M., Torabi, S. A., & Heydari, J. (2020). A novel option contract integrated with supplier selection and inventory prepositioning for humanitarian relief supply chains. Socio-Economic Planning Sciences, 71, 100780.
[22] Maghfiroh, M. F., & Hanaoka, S. (2020). Multi-modal relief distribution model for disaster response operations. Progress in Disaster Science, 6, 100095.
[23] Mansoori, S., Bozorgi-Amiri, A., & Pishvaee, M. S. (2020). A robust multi-objective humanitarian relief chain network design for earthquake response, with evacuation assumption under uncertainties. Neural Computing and Applications, 32(7), 2183-2203.
[24] Sabouhi, F., Bozorgi-Amiri, A., & Vaez, P. (2020). Stochastic optimization for transportation planning in disaster relief under disruption and uncertainty. Kybernetes.
[25] Mamashli, Z., Bozorgi-Amiri, A., Dadashpour, I., Nayeri, S., & Heydari, J. (2021). A heuristic-based multi-choice goal programming for the stochastic sustainable-resilient routing-allocation problem in relief logistics. Neural Computing and Applications, 1-27.
[26] Rezaei Kallaj, M., Abolghasemian, M., Moradi Pirbalouti, S., Sabk Ara, M., & Pourghader Chobar, A. (2021). Vehicle Routing Problem in Relief Supply under a Crisis Condition considering Blood Types. Mathematical Problems in Engineering, 2021.
[27] Cao, C., Liu, Y., Tang, O., & Gao, X. (2021). A fuzzy bi-level optimization model for multi-period post-disaster relief distribution in sustainable humanitarian supply chains. International Journal of Production Economics, 235, 108081.
[28]Horner, M. W., Ozguven, E. E., Marcelin, J. M., & Kocatepe, A. (2021). Special needs hurricane shelters and the ageing population: development of a methodology and a case study application. Disasters, 42(1), 169-186.
[29] Shao-hong, Y., Jia-yang, N., Tai-long, C., Qiu-tong, L., Cen, Y., Jia-qing, C. & Jie, L. (2022). Location algorithm of transfer stations based on density peak and outlier detection. Applied Intelligence, 1-13.
[30] Peng, D., Ye, C., & Wan, M. (2022). A multi-objective improved novel discrete particle swarm optimization for emergency resource center location problem. Engineering Applications of Artificial Intelligence, 111, 104725.
[31] Poornaser, M., Amoozadkhalili, H., & Motamedi, M. (2022). Routing disaster relief vehicles in a humanitarian supply chain. Disaster Prevention and Management Knowledge (quarterly), 12(2), 205-216.
[32] Pirouz, B., & Khorram, E. (2016). A computational approach based on the ε-constraint method in multi-objective optimization problems. Adv. Appl. Stat, 49, 453.
[33]Abolghasemian, M., Kanai, A. G., & Daneshmandmehr, M. (2020). A two-phase simulation-based optimization of hauling system in open-pit mine. Iranian journal of management studies, 13(4), 705-732.
[34] Modarresi, S. A., & Maleki, M. R. (2023). Integrating pre and post-disaster activities for designing an equitable humanitarian relief supply chain. Computers & Industrial Engineering, 181, 109342.
[35] Jafarzadeh-Ghoushchi, S., Asghari, M., Mardani, A., Simic, V., & Tirkolaee, E. B. (2023). Designing an efficient humanitarian supply chain network during an emergency: A scenario-based multi-objective model. Socio-Economic Planning Sciences, 90, 101716.
[36] Eligüzel, İ. M., Özceylan, E., & Weber, G. W. (2023). Location-allocation analysis of humanitarian distribution plans: a case of United Nations Humanitarian Response Depots. Annals of Operations Research, 324(1-2), 825-854.
[37] Narimani R, Motamedi M, Amoozad khalili H. (2023). Applying a Mathematical Model for the Distribution of Earthquake Relief Items to the Affected Areas of Tehran. Disaster Prevention and Management Knowledge. 13(2), 184-203.
[38] Goudarzi, H. M., Lim, G., Grosshans, D., Mohan, R., & Cao, W. (2024). Incorporating variable RBE in IMPT optimization for ependymoma. Journal of applied clinical medical physics, 25(1), e14207.
[39] Abolghasemian, M., Pourghader Chobar, A., AliBakhshi, M., Fakhr, A., & Moradi Pirbalouti, S. (2021). Delay scheduling based on discrete-event simulation for construction projects. Iranian Journal of Operations Research, 12(1), 49-63.

مقالات آماده انتشار، پذیرفته شده
انتشار آنلاین از تاریخ 20 اسفند 1402
  • تاریخ دریافت: 12 مرداد 1402
  • تاریخ بازنگری: 27 آذر 1402
  • تاریخ پذیرش: 15 دی 1402